Publications

Peer-Reviewed Journal Publications

  1. Halim, M.A.*; Karmakar, S.; Hamid, M.A.; Chandan, C.S.S.; Rahaman, I.; Urena, M.E.; Haque, A.; Chen, Y.; Rhodes, C.P.; Beall, G.B. Improved Electrochemical Performance in an Exfoliated Tetracyanonickelate-Based Metal-Organic Framework. ACS Applied Materials & Interfaces 2023, Article ASAP. Link to article.
  2. Kimmel, S.K.; Kuykendall, K.; Mough, C.; Landry, A.; Rhodes, C.P.* Effect of Microwave Synthesis Conditions on the Structure of Nickel Hydroxide Nanosheets. Journal of Visualized Experiments 2023, 198, e65412. Link to article.
  3. Kimmel, S.K.; Koehne, B.D.; Gibson, B.; Geerts, W.J.; Theodoropoulou, N.*; Rhodes, C.P.* Structure and Magnetism of Iron-Substituted Nickel Hydroxide Nanosheets Magnetochemistry 2023, 9, 25. Link to article.
  4. Godínez-Salomón, J. F.; Ospina-Acevedo, F.; Albiter, L.; Bailey, K.O.; Naymik, Z.G.; Mendoza-Cruz, R.; Balbuena, P.B.*; Rhodes, C.P.*, Titanium Substitution Effects on the Structure, Activity, and Stability of Nanoscale Ruthenium Oxide Oxygen Evolution Electrocatalysts: Experimental and Computational Study. ACS Applied Nano Materials 2022, 8, 11752-11775. Link to article.
  5. Camacho-Forero, L.E.; Godínez-Salomón, F.; Ramos-Sánchez, G.; Rhodes, C.P.*; Balbuena, P.B.* Theoretical and Experimental Study of the Effects of Cobalt and Nickel Doping within IrO2 on the Acidic Oxygen Evolution Reaction, Journal of Catalysis 2022, 408, 64-80. LInk to article.
  6. Kimmel, S.K.; Hopkins, B.J.; Chervin, C.N.; Skeele, N. L.; Ko, J.S.; DeBlock, R.H.; Long, J.W.; Parker, J.F.; Hudak, B.M.; Stroud, R.M.; Rolison, D.R.*; Rhodes, C.P.* Capacity and Phase Stability of Metal-Substituted α-Ni(OH)2 Nanosheets in Aqueous Ni–Zn Batteries. Materials Advances 2021, 2, 3060-3074. Link to article.
  7. Ying, Y.; Godínez-Salomón, J.F.; Moreno, A.; Lartundo-Rojas, L.; Meyer, B.; Damin, C.A.; Rhodes, C.P. Hydrous Cobalt-Iridium Oxide Two-Dimensional Nanoframes: Insights into Activity and Stability of Bimetallic Acidic Oxygen Evolution Electrocatalysts, Nanoscale Advances 2021, 3, 1976-1996. Link to article.
  8. Harper-Leatherman, A.S.; Wallace, J.M.; Long, J.W.; Rhodes, C.P.; Graffam, M.E.; Abunar, B.H.; Rolison, D.R. Redox Cycling within Nanoparticle-Nucleated Protein Superstructures: Electron Transfer between Nanoparticulate Gold, Molecular Reductant, and Cytochrome c, Journal of Physical Chemistry B, 2021, 125, 1735-1745. Link to article.
  9. Godínez-Salomón, F.; Albiter, L.; Mendoza-Cruz, R.; Rhodes, C.P. Bimetallic Two-dimensional Nanoframes: High Activity Acidic Bifunctional Oxygen Reduction and Evolution Electrocatalysts, ACS Applied Energy Materials 2020, 3, 2404-2421. Link to article.
  10. Godínez-Salomón, F.; Albiter, L.; Alia, S.; Pivovar, B.; Camacho-Forero, L.; Balbuena, P; Mendoza-Cruz, R.; Arellano-Jimenez, M.J.; Rhodes, C.P. Self-Supported Hydrous Iridium-Nickel Oxide Two-dimensional Nanoframes for High Activity Oxygen Evolution Electrocatalysts, ACS Catalysis 2018, 8, 10498-10520. DOI: 10.1021/acscatal.8b02171. Link to article.
  11. Reyes, C.; Somogyi, R.; Niu, S.; Catenacci; M.; Cruz, M.; Rhodes, C.P.; Wiley, B.J. Three-Dimensional Printing of a Complete Lithium Ion Battery with Fused Filament Fabrication, ACS Applied Energy Materials 2018, 1, 5268–5279. DOI: 10.1021/acsaem.8b00885. Link to article
  12. Duraia, E.M.; Niu, S.; Beall, G.W.; Rhodes, C.P., Humic Acid-Derived Graphene-SnO2 Nanocomposites for High Capacity Lithium-Ion Battery Anodes, Journal of Materials Science: Materials in Electronics 2018, 29, 8456-8464. DOI: 10.1007/s10854-018-8858-x. Link to article.
  13. Niu, S.; McFeron, R.; Godínez-Salomón, F.; Chapman, B.S.; Damin, C.A.; Tracy, J.B.; Augustyn, V.; Rhodes, C.P. Enhanced Electrochemical Lithium-Ion Charge Storage of Iron Oxide Nanosheets, Chemistry of Materials 2017, 29, 7794-7807.  DOI: 10.1021/acs.chemmater.7b02315. Link to article.
  14. Godínez-Salomón, F.; Rhodes, C.P; Alcantara, K.S.; Zhu, Q.; Canton, S.E.; Calderon, H.A.; Reyes-Rodríguez, J.L.; Leyva, M.A.; Solorza-Feria, O., Tuning the Oxygen Reduction Activity and Stability of Ni(OH)2@Pt/C Catalysts through Controlling Pt Surface Composition, Strain, and Electronic Structure, Electrochimica Acta 2017, 247, 958-969.  DOI: 10.1016/j.electacta.2017.06.073. Link to article.
  15. Godínez-Salomón, F.; Mendoza-Cruz, R; Arellano-Jimenez, M.J.; Jose-Yacaman, M.; Rhodes, C.P; Metallic Two-dimensional Nanoframes: Design of Carbon-free Hierarchical Nickel-Platinum Alloy Electrocatalyst Nanoarchitecture with Enhanced Oxygen Reduction Activity and Stability, ACS Applied Materials & Interfaces 2017, 9, 18660-18674. DOI: 10.1021/acsami.7b00043. Link to article.
  16. Perera, S.D.; Archer, R.; Damin, C.A.; Mendoza-Cruz, R.; Rhodes, C.P. Controlling interlayer interactions in vanadium pentoxide-poly(ethylene oxide) nanocomposites for enhanced magnesium-ion charge transport and storage, Journal of Power Sources 2017, 343, 580-591. DOI:10.1016/j.jpowsour.2017.01.052. Link to article.
  17. Stein, M.; Chen, C.; Mullings, M.; Jamie, D.J.; Zaleski, A.; Mukherjee, P.; Rhodes, C.P. Probing the Effect of High Energy Ball Milling on the Structure and Properties of Li1/3Ni1/3Mn1/3Co1/3O2 Cathodes Journal of Electrochemical Energy Conversion and Storage 201613, 031001. DOI:10.1115/1.4034755.  Link to article.
  18. Stein, M.; Chen, C.; Robles, D.J. Rhodes, C.P.; Mukherjee, P. Non-Aqueous Electrode Processing and Construction of Lithium-ion Coin Cells. Journal of Visualized Experiments 2016, 180, e53490. DOI: 10.3791/53490. Link to article.
  19. Deardorff, C.L. Sikma, R.E.; Rhodes, C.P.; Hudnall, T.W. Carbene-derived α-acyl iminium cations: organic molecules with readily tunable multiple redox processes, Chemical Communications 2016, 180, e53490.  DOI: 10.1039/c5cc06322a. Link to article.
  20. High energy capacity TiB2/VB2 composite metal boride/air battery, Stuart, M. Lefler, C.P. Rhodes, and S. Licht, Journal of The Electrochemical Society, 2015, 162, A1-A5. DOI: 10.1149/2.0721503jes. Link to article.
  21. The Net Discharge Mechanism of the VB2/Air Battery, J. Stuart, A. Hohenadel, X. Li, H. Xiao, J. Parkey, C.P. Rhodes, and S. Licht, Journal of The  Electrochemical Society, 162 (1) A192-197 (2015). DOI: 10.1149/2.0801501jes. Link to article.
  22. Evaluation of properties and performance of nanoscopic materials in vanadium boride-air batteries, C.P. Rhodes, J. Stuart, R. Lopez, X. Li, M. Waje, M. Mullings, and S. Licht, Journal of Power Sources 239, 244-252(2013). DOI: 10.1016/j.jpowsour.2013.03.071. Link to article.
  23. Fabrication of VB2 / Air cells for Electrochemical Testing, J. Stuart, R. Lopez, J. Lau, X. Li, M. Waje, M. Mullings, C. Rhodes, and S. Licht, Journal of Visualized Experiments 78, e50593 (2013). DOI: 10.3791/50593. Link to article.
  24. Architectural integration of the components necessary for electrical energy storage on the nanoscale and in three dimensions, C.P. Rhodes, J.W. Long, K.A. Pettigrew, R.M. Stroud, and D.R. Rolison, Nanoscale 3, 1731–1740 (2011). DOI: 10.1039/c0nr00731e. Link to article.
  25. Development of a biofuel cell using glucose-oxidase- and bilirubin-oxidase-based electrodes,J. Kim, J. Parkey, C. Rhodes, and A. Gonzalez-Martin, Journal of Solid State Electrochemistry 13, 1043–1050 (2009). DOI: 10.1007/s10008-008-0725-x
  26. Multifunctional 3D nanoarchitectures for energy storage and conversion, D.R. Rolison, J.W. Long, J.C. Lytle, A.E. Fischer, C.P. Rhodes, T.M. McEvoy, M.E. Bourg, and A.M. Lubers, Chemical Society Reviews 38, 226–252 (2009). DOI:10.1039/b801151f. Link to article.
  27. Simultaneous TOC reduction and biofouling prevention in BWP processed water, A. Gonzalez-Martin, K. Ozdemir, C. Rhodes, B. Hennings, C. Tennakoon, J. McGinnis, and J. Kim, SAE International Journal of Aerospace 1, 454–460 (2008). DOI: 10.4271/2008-01-2146. Link to article. 
  28. The importance of combining disorder with order for Li-ion insertion into cryogenically prepared nanoscopic ruthenia, J.C. Lytle, C.P. Rhodes, J.W. Long, K.A. Pettigrew, R.M. Stroud, and D.R. Rolison, Journal of Materials Chemistry 17, 1292–1299 (2007). DOI:10.1039/b614433k
  29. Using an oxide nanoarchitecture to make or break a proton wire, M.S. Doescher, J.J. Pietron, B.M. Dening, J.W. Long, C.P. Rhodes, C.A. Edmondson, and D.R. Rolison, Analytical Chemistry77, 7924–7932 (2005). DOI: 10.1021/ac051168b
  30. Direct electrodeposition of nanoscale solid polymer electrolytes via electropolymerization of sulfonated phenols, C.P. Rhodes, J. W. Long, D. R. Rolison, Electrochemical and SolidState Letters8, A579–A584 (2005).DOI: 10.1149/1.2050508   
  31. Nanoscale polymer electrolytes: Ultrathin electrodeposited poly(phenylene oxide) with solid-state ionic conductivity, C.P. Rhodes, J.W. Long, M.S. Doescher, J.J. Fontanella, and D.R. Rolison, Journal of Physical Chemistry B108, 13079–13087 (2004). DOI: 10.1021/jp047671u
  32. Charge insertion into hybrid nanoarchitectures: Mesoporous manganese oxide coated with ultrathin poly(phenylene oxide), C.P. Rhodes, J.W. Long, M.S. Doescher, B.M. Dening, and D.R. Rolison, Journal of Non-Crystalline Solids350, 73–79 (2004). DOI: 10.1016/j.jnoncrysol.2004.06.050
  33. Nanocrystalline iron oxide aerogels as mesoporous, magnetic architectures, J.W. Long, M.S. Logan, C.P. Rhodes, E. Carpenter, R.M. Stroud, and D.R. Rolison, Journal of the American Chemical Society 126, 16879–16889(2004).  DOI: 10.1021/ja046044f
  34. Ultrathin, protective coatings of poly(o-phenylenediamine) as electrochemical proton gates: Making mesoporous MnO2 nanoarchitectures stable in acid electrolytes, J.W. Long, C.P. Rhodes, A.L. Young, and D.R. Rolison, Nano Letters 3, 1155–1161 (2003). DOI: 10.1021/nl0343598
  35. Crystalline phases of poly(ethylene oxide) oligomers with sodium triflate: Changes in coordination and conformation with chain length, C.P. Rhodes, M. Kahn, and R. Frech, The Journal of Physical Chemistry B 106, 10330–10337 (2002). DOI: 10.1021/jp0141981
  36. Molecular dynamics simulations and vibrational spectroscopic studies of local structure in tetraglyme:sodium triflate (CH3O(CH2CH2O)4CH3:NaCF3SO3) solutions, H.T. Dong, J.K. Hyun, C.P. Rhodes, R. Frech and R.A. Wheeler, The Journal of Physical Chemistry B106, 4878–4885 (2002). DOI: 10.1021/jp013914w
  37. A comparison of local structures in crystalline P(EO)3LiCF3SO3 and glyme-LiCF3SO3 systems, R. Frech, C.P. Rhodes, and M. Khan, Macromolecular Symposia 186, 41–49 (2002). DOI: 10.1002/1521-3900(200208)186
  38. A symmetry-based study of vibrational decoupling in the crystalline phases of CH3(OCH2CH2)2OCH3LiCF3SO3 and P(EO)3LiCF3SO3. R. Frech and C.P. Rhodes, Solid State Ionics 147, 259–264 (2002). DOI: 10.1016/S0167-2738(02)00018-8
  39. Local structures in crystalline and amorphous phases of diglyme-LiCF3SO3 and poly(ethylene oxide)-LiCF3SO3 systems: Implications for the mechanism of ionic transport, C.P. Rhodes and R. Frech, Macromolecules 34, 2660–2666 (2001). DOI: 10.1021/ma001749x
  40. Effect of temperature on local structure in poly(ethylene oxide)–zinc bromide salt complexes, B.P. Grady, C.P. Rhodes, S. York, and R. Frech, Macromolecules 34, 8523–8531 (2001). DOI: 10.1021/ma010210b
  41. Vibrational spectroscopic study of 2-methoxyethyl ether complexed with lithium and sodium trifluoromethane sulfonate, M. Petrowsky, C.P. Rhodes, and R. Frech, Journal of Solution Chemistry 30, 171–181(2001). DOI: 10.1023/A:1005204727421
  42. Molecular dynamics simulations and spectroscopic studies of amorphous tetraglyme (CH3O(CH2CH2O)4CH3) and tetraglyme:LiCF3SO3 structures, J. Hyun, H. Dong, C.P. Rhodes, R. Frech, and R.A. Wheeler, Journal of Physical Chemistry B105, 3329–3337 (2001). DOI: 10.1021/jp003591o
  43. Vibrational analysis of the polymer electrolyte poly(ethylene oxide)6:LiAsF6, C.P. Rhodes and R. Frech, Macromolecules 34, 1365–1368 (2001). DOI: 10.1021/ma0008387
  44. A symmetry-based analysis of Raman and infrared spectra of the compounds (poly(ethylene oxide))3LiCF3SO3 and (poly(ethylene oxide))NaCF3SO3, C.P. Rhodes and R. Frech, Solid State Ionics 136-137, 1131–1137 (2000). DOI: 10.1016/S0167-2738(00)00608
  45. Studies of cation-anion and cation-polymer association in poly(ethylene oxide): Pb(CF3SO3)2 complexes, C.P. Rhodes, B. Klassen, R. Frech, Y. Dai, and S.G. Greenbaum. Solid State Ionics 126, 251–257 (1999). DOI: 10.1016/S0167-2738(99)00238-6
  46. Cation–anion and cation–polymer interactions in (PEO)nNaCF3SO3 (n=1-80), C.P. Rhodesand R. Frech, Solid State Ionics 121, 91–99 (1999). DOI: 10.1016/S0167-2738(98)00534-7

Conference Proceedings

  1. Safe Energy System that Allows Enhanced UUV Missions, J. Reeh, M. Nelson, C. Rhodes, B. Hennings,Proceedings of the 46th Power Sources Meeting, Las Vegas, NV, June 9–12 June 2014.
  2. High energy density vanadium boride–air batteries, S. Licht, C. Hettige, J. Lau, J. Stuart, R. Lopez, M. Mullings,and C.P. Rhodes, Proceedings of the 45th Power Sources Meeting, Las Vegas, NV, 11–14 June 2012.
  3. Polymer nanocomposites for high energy storage capacitors, N. Bestaoui-Spurr, T. Adams, C. Rhodes, C.A. Edmondson, J.J. Fontanella, and M.C. Wintersgill,” Proceedings of the ASME 2010 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, Philadelphia, Pennsylvania, 28 September – 1 October 2010.
  4. Advanced electrolytes for extreme temperature supercapacitors, M. Mullings and C.P. Rhodes, Proceedings of the 44th Power Sources Meeting, Las Vegas, NV, 14–17 June 2010.
  5. Advanced Electrode Materials for High Power Density Batteries and Supercapacitors, Y. Fu and C.P. Rhodes, Proceedings of the 44th Power Sources Meeting, Las Vegas, NV, 14–17 June 2010.
  6. Integrating the multifunction necessary for 3-D batteries into mesoporous nanoarchitectures, J. W. Long, C. P. Rhodes, J.C. Lytle, K. A. Pettigrew, R. M. Stroud, D.R. Rolison, Preprints of Symposia – American Chemical Society, Division of Fuel Chemistry, 50(1), 311-313 (2006).
  7. Controlling defects in nanostructured V2O5: Spectroelectrochemical characterization, C.P. Rhodes, W. Dong, J.W. Long, and D.R. Rolison, in Solid State Ionics VI, E.D. Wachsman, K.E. Swider-Lyons, M.F. Carolan, F.H. Garzon, M. Liu, and J.R. Stetter, Eds., PV2002-26, Electrochemical Society:  Pennington, NJ, 2003, 478–489.
  8. A comparative study of ionic association in poly(ethylene oxide)-MCF3SO3 systems (M=lithium and sodium)” R. Frech, C.P. Rhodes and S.S. York. Mater. Res. Soc. Symp. Proc. 548, 335–345 (1999).